135,444 research outputs found

    Superconducting pairing of interacting electrons: implications from the two-impurity Anderson model

    Full text link
    We study the non-local superconducting pairing of two interacting Anderson impurities, which has an instability near the quantum critical point from the competition between the Kondo effect and an antiferromagnetic inter-impurity spin exchange interaction. As revealed by the dynamics over the whole energy range, the superconducting pairing fluctuations acquire considerable strength from an energy scale much higher than the characteristic spin fluctuation scale while the low energy behaviors follow those of the staggered spin susceptibility. We argue that the glue to the superconducting pairing is not the spin fluctuations, but rather the effective Coulomb interaction. On the other hand, critical spin fluctuations in the vicinity of quantum criticality are also crucial to a superconducting pairing instability, by preventing a Fermi liquid fixed point being reached to keep the superconducting pairing fluctuations finite at low energies. A superconducting order, to reduce the accumulated entropy carried by the critical degrees of freedom, may arise favorably from this instability.Comment: 6 pages, 2 figure

    WIMPless dark matter and the excess gamma rays from the Galactic center

    Full text link
    In this paper we discuss the excess gamma rays from the Galactic center, the WMAP haze and the CoGeNT and DAMA results in WIMPless models. At the same time we also investigate the low energy constraints from the anomalous magnetic moment of leptons and from some lepton flavor violating decays. It is found that, for scalar or vector WIMPless dark matter, neither the WMAP haze nor the CoGeNT and DAMA observations could be explained simultaneously with the excess gamma rays from the Galactic center. As to fermion WIMPless dark matter, it is only marginally possible to accommodate the CoGeNT and DAMA results with the excess gamma rays from the Galactic center with vector connector fields. On the other hand, only scalar connector fields could interpret the WMAP haze concerning the constraints of anomalous magnetic moment of leptons. Furthermore, if there is only one connector field for all the charged leptons, some lepton flavor violating decays could happen with too large branching ratios severely violating the experimental bounds.Comment: 15 pages, 3 figures, accepted for publication in Phys. Rev.

    Dual-band wearable textile antenna on an EBG substrate

    No full text
    Performance of a dual-band coplanar patch antenna integrated with an electromagnetic band gap substrate is described. The antenna structure is made from common clothing fabrics and operates at the 2.45 and 5 GHz wireless bands. The design of the coplanar antenna, band gap substrate, and their integration is presented. The band gap array consists of just 3 x 3 elements but reduces radiation into the body by over 10 dB and improves the antenna gain by 3 dB. The performance of the antenna under bending conditions and when placed on the human body are presented

    Spin-dependent Fano resonance induced by conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide

    Full text link
    Fano resonance appears for conduction through an electron waveguide containing donor impurities. In this work, we consider the thin-film conducting chiral helimagnet (CCH) as the donor impurity in a one-dimensional waveguide model. Due to the spin spiral coupling, interference between the direct and intersubband transmission channels gives rise to spin-dependent Fano resonance effect. The spin-dependent Fano resonance is sensitively dependent on the helicity of the spiral. By tuning the CCH potential well depth and the incident energy, this provides a potential way to detect the spin structure in the CCH.Comment: 14 pages, 6 figure

    The Spin Stiffness and the Transverse Susceptibility of the Half-filled Hubbard Model

    Full text link
    The T=0T=0 spin stiffness ρs\rho _{s} and the transverse susceptibility χ\chi _{\perp } of the square lattice half-filled Hubbard model are calculated as a function of the Hubbard parameter ratio U/tU/t by series expansions around the Ising limit. We find that the calculated spin-stiffness, transverse susceptibility, and sublattice magnetization for the Hubbard model smoothly approach the Heisenberg values for large U/tU/t. The results are compared for different U/tU/t with RPA and other numerical studies.Comment: 9 Revtex pages, 3 Postscript figures, Europhys. Lett. in pres
    corecore